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全球疾病负担研究（global burden of disease，

GBD 2021）数据显示，卒中已成为全球第二大致死因

素。在我国，卒中的终身风险高达 39.3%，这一比例

高于欧美国家的 20%～25%，因此，卒中防治工作

面临着巨大的挑战［1-3］。在卒中患者中，胃肠功能

障碍（gastrointestinal dysfunction，GID）是一种较为常

见的并发症，其临床表现为便秘、腹胀、恶心、呕吐、

排便异常以及呃逆等，还会引发营养不良、免疫功

能降低，并且增加感染风险以及延长住院时间［4］。

尽管已经有相关研究针对卒中后 GID 的流行状况展

·综述·

脑-肠轴对卒中后胃肠功能障碍作用机制的

研究进展

董展辰 温定岢 尹瑶 朱伟 王聪 蒋艳

610041 成都，四川大学华西医院循证护理研究室（董展辰、王聪、蒋艳），神经外科（温定岢、

尹瑶、朱伟）；610041 成都，四川大学华西护理学院（董展辰、温定岢、尹瑶、朱伟、王聪、

蒋艳）

通信作者：蒋艳，Email： jiangyan9319@wchscu.edu.cn
DOI：10.3969/j.issn.1009-6574.2025.11.011

【摘要】 卒中后胃肠功能障碍是脑 - 肠轴失去平衡的结果，其中覆盖了自主神经功能出现紊乱、神

经炎症不断放大、肠道屏障遭受损害以及菌群代谢出现异常等情况。中枢神经系统与胃肠道之间的双

向调控异常使胃肠功能障碍与卒中后神经损伤互相促进，形成持续性病理循环。近年来，针对脑 - 肠轴

的研究揭示了自主神经调控、免疫炎症调节及肠道微生态修复在胃肠功能障碍中的潜在作用，为优化

干预策略提供了新思路。未来的研究应当关注脑 - 肠轴的动态调控机制，探索多维干预手段的协同作

用，以期为卒中后脑 - 肠轴的修复及神经功能改善提供更精准的理论支持与治疗方向。
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further focus on the dynamic regulation mechanism of the brain-gut axis and explore the synergistic effects of 
multidimensional interventions， with the aim of providing precise theoretical support and therapeutic direction 
for the improvement of the brain-gut axis and the recovery of post-stroke neurological function.
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开了探讨，但其具体的发病机制尚未完全阐明，卒

中借助神经 - 免疫 - 肠道菌群通路对胃肠功能产生

影响这方面，仍然缺少系统性的研究［5-6］。脑 - 肠

轴是肠神经系统（enteric nervous system，ENS）与 CNS

之间的双向信号通路，近年来被认为在卒中后 GID

的发生、发展中起重要作用［7］。研究表明，卒中可

通过自主神经系统（autonomic nervous system，ANS）

调控、炎症介导的肠屏障损伤及肠道菌群失衡等多

种机制影响胃肠功能［8-9］。然而，目前针对脑 - 肠轴

在卒中后 GID 中的作用仍缺乏系统总结，干预策略

也未形成统一共识。现就脑 - 肠轴在卒中后 GID 中

的作用机制进行综述，重点探讨 ANS、炎症免疫及

肠道菌群失衡的相互作用，并分析基于脑 - 肠轴的

个体化干预策略，以期为卒中后 GID 的预测、诊断

和治疗提供新思路。

一、卒中后 GID 现状

卒中后 GID 出现的比率相对较高，并且其临

床表现会依据患者病情以及卒中类型的不同而呈

现出差异，流行病学数据显示，卒中后 GID 的发生

率可达 30%～90%，其中便秘以及胃肠动力障碍是

最常见的症状［10-11］。近年来，有多项研究针对卒

中后GID的流行状况展开了探讨。一项回顾性研究

发现，卒中患者GID的发生率为30%～50%，其中便

秘和消化不良较为常见［12］。一项在 2023 年开展的

多中心研究说明，卒中患者 GID 的总体发生率高

达 76.24%，其中脑出血患者为 90%，脑梗死患者为

72.3%，这显示出不同类型卒中患者的 GID 发生率

存在差异［13］。另外卒中后 GID 的发生率在重症卒

中患者如基底动脉闭塞、脑干卒中患者中更高，可

能与 CNS 调控功能障碍更为严重有关［14］。目前卒

中后 GID 的研究主要聚焦在流行病学数据以及临床

观察方面，关于其发病机制的研究依旧处于探索时

期。现有研究指出，卒中后 GID 的发生与多个因素

相关联，覆盖神经损伤程度如 NIHSS、ANS 功能紊乱

（即交感 / 副交感神经失衡）、炎症状态（如 CRP 升高）、

肠屏障通透性增加、胃肠动力下降（例如胃排空延

迟、肠蠕动功能减弱）［11，15］。然而，目前的研究大

多基于临床观察，缺少针对脑 - 肠轴信号通路的分

子机制研究，而且现有的干预策略如胃肠动力药

物、肠内营养仍然缺乏精准的个体化治疗方案，卒

中后GID的管理依旧面临着挑战［10］。深入剖析脑-

肠轴在卒中后 GID 中的作用机制，ANS、炎症免疫

以及肠道菌群的相互作用制定更精准的干预策略，

以降低 GID 的发生率，改善患者预后。

二、胃肠道与 CNS 的双向调控

关于脑 - 肠轴的研究可追溯到 19 世纪，当时学

者发现到胃肠功能出现异常情况，如腹泻、腹胀，

大多会随着情绪以及认知状态的改变而改变，这

为胃肠道与CNS之间的相互作用提供了早期的线

索。在20世纪初期，巴甫洛夫经过对消化系统反射

的研究，证实了胃肠道功能是受到CNS调控的，并

且首次提出了胃肠与大脑之间的相互作用模型［16］。

随着研究的推进，脑 - 肠轴的作用渐渐被扩展到神

经病学、神经退行性疾病以及精神疾病等领域，这

显示出CNS 对胃肠功能进行调控，而且胃肠道及其

微生物群也可依靠神经、免疫以及内分泌信号对大

脑产生影响［17］。脑 - 肠轴的紊乱已经被认定与多

种疾病存在关联，其中包括肠易激综合征、炎症性

肠病、PD、AD 以及抑郁症等［18］。近年来，研究重

点逐渐向脑 - 肠轴的一个关键组成部分即肠道微

生物群方向转变。肠道内存在数万亿种微生物，

其通过代谢产生短链脂肪酸（short-chain fatty acids，

SCFAs）、神经递质及细菌毒素，能够影响CNS功能［19］。 

研究表明，肠道菌群的组成、代谢产物及其调节的

免疫反应均可显著影响宿主的神经生理状态，并

可能通过菌群失衡介导疾病发生［17，20］。基于此，

脑 - 肠轴的研究已进一步扩展为“微生物 - 脑 - 肠

轴”（microbiota-gut-brain axis，MGBA），强调肠道微

生物群在 CNS-ENS 互作中的核心作用［18］。近年来，

MGBA 被认为可能在卒中后 GID 的发生、发展中起

重要作用，其通过影响 ANS、调节炎症反应及改变

肠道屏障功能，可能在卒中后 GID 的病理过程中发

挥关键作用［20］。进一步探讨MGBA的作用机制有助

于揭示卒中后GID的发生机制，并为精准干预提供

新思路。

三、脑 - 肠轴导致卒中后 GID 的机制

脑 - 肠轴是连接 CNS 与胃肠道的关键调节网

络，通过 ANS、免疫系统及肠道菌群的相互作用维

持胃肠道稳态［7］。卒中后，脑 - 肠轴的正常调控被

破坏，导致 GID 的发生和发展，主要表现为 ANS 失

衡、神经炎症加剧及肠道菌群紊乱，三者之间相互

影响，形成复杂的病理网络［20］。卒中后，交感神经

系统（sympathetic nervous system，SNS）活动增强，副

交感神经系统（parasympathetic nervous system，PNS）

功能受损，直接影响胃肠动力、分泌及屏障功能。

SNS 兴奋性增强可减少胃肠血流、抑制蠕动并增加

肠道通透性；而PNS功能下降则削弱迷走神经（vagus 

nerve，VN）对胃肠道的保护作用，导致消化液分泌
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减少、胃肠排空延迟，加重GID［21-22］。CNS损伤后，

神经炎症反应增强，促炎因子（TNF-α、IL-6、IL-1b） 

通过血脑屏障（blood-brain barrier，BBB）和血 - 肠屏

障（gut-blood barrier，GBB）影响胃肠道，诱发局部炎

症并削弱肠道屏障［23］。炎症介导的屏障破坏使内毒

素更易进入循环，进一步激活CNS炎症，加重神经损

伤，形成“卒中-肠道-神经炎症反馈环”［24］。卒中

可改变肠道菌群的组成以及代谢功能，如 SCFAs 减

少、色氨酸代谢出现紊乱等情况，这些变化可借助

菌群 - 神经递质轴对 CNS 功能进行调节，还可以凭

借菌群 - 免疫互作来影响炎症水平［25］。菌群失衡

会使 GID 加重，还可能对卒中后的神经可塑性以及

康复进程产生影响［26］。卒中后脑 - 肠轴的紊乱涉

及 ANS、炎症以及肠道菌群之间复杂的交互作用，

这些病理机制并非单独存在，而是形成了“卒中 -

神经炎症 -GID- 菌群失衡”这样的恶性循环，加重

患者的临床症状。

1. ANS 调节与 GID：ANS 在维持胃肠功能稳态

方面发挥核心作用，通过调控胃肠蠕动、分泌、血流

及屏障功能，确保正常消化与吸收过程。卒中后，

ANS 调节失衡，表现为 SNS 过度激活及 PNS 功能抑

制，两者相互作用，最终导致 GID 的发生和加重［8］。

卒中后，SNS 的兴奋性增强，主要通过去甲肾上腺

素作用于肠道平滑肌及血管，抑制胃肠蠕动、减少

消化液分泌，并通过 a1 受体介导血管收缩，使胃肠

道供血减少，导致组织缺血缺氧［27］。同时，SNS 过

度激活可增加肠道通透性，b2 受体的刺激使紧密

连接蛋白（如 occludin、claudin）磷酸化并降解，削弱

上皮屏障，使脂多糖（lipopolysaccharide，LPS）及炎

性因子易穿透肠道进入循环，进一步激活 CNS 炎症

反应［28］。此外，SNS 对下丘脑 - 垂体 - 肾上腺（The 

hypothalamic-pituitary-adrenal，HPA）轴的持续刺激

可促使糖皮质激素释放，抑制局部免疫反应，导致

抗炎能力下降，形成低度慢性炎症环境，加剧胃肠

功能损害［29］。与此同时，PNS 功能受损，VN 活性下

降，进一步削弱了对胃肠功能的保护作用。卒中后，

VN 释放乙酰胆碱（acetylcholine，ACh）的能力下降，

导致 M2、M3 受体介导的胆碱能信号减弱，使胃肠

蠕动减慢、排空延迟，同时胃酸、胆汁及胰液分泌减

少，影响食物消化和营养吸收［30］。更重要的是，VN

还通过胆碱能抗炎通路（cholinergic anti-inflammatory 

pathway，CAP）抑制促炎细胞因子的释放。卒中后

该通路受损，使 TNF-α、IL-6、IL-1b 等炎症因子持

续升高，加重肠道屏障损伤，促进 GID 的发展［21］。

此外，VN 调节的 5-HT 水平异常也被认为是卒中后

胃肠动力障碍的重要因素，低水平的 5-HT 减少了

对肠道平滑肌及 ENS 的调控能力，进一步加重胃肠

运动功能障碍［27］。正常情况下，SNS 与 PNS 在胃

肠功能调节中维持动态平衡，但卒中后两者共同失

衡，使 GID 的发生机制更为复杂。SNS 抑制胃肠蠕

动，而 PNS 的保护作用减弱，使胃肠动力障碍加剧；

SNS 破坏肠道屏障，PNS 抗炎作用不足，使炎症持续

加重，形成恶性循环；交感迷走轴的失衡还进一步

影响 HPA 轴及免疫系统，使神经炎症、胃肠炎症及

ANS 功能障碍交互作用，进一步放大脑 - 肠轴的病

理效应［31-32］。因此，卒中后 GID 并非单一神经通路

受损所致，而是多系统协同失衡的结果。针对 ANS

调节异常的干预，如 VN 刺激及 ANS 调控疗法，可能

成为改善卒中后 GID 的重要策略。

2. 神经炎症与胃肠功能障碍：卒中不只是局灶

性脑损伤事件还伴有神经炎症，该过程不限于 CNS，

还 经 BBB 和 GBB 影 响 外 周 器 官 胃 肠 道。 卒 中 后

CNS 炎症会直接影响 ENS 及 ANS 功能，致使胃肠动

力降低、分泌功能失调、肠屏障受损，引发 GID；胃

肠道炎症状态也会反过来影响 CNS，加重卒中后神

经损伤，让脑 - 肠轴紊乱变得更加严重。神经炎症

与 GID 的这种双向交互作用构成持续病理循环，对

卒中患者临床结局影响较大［24］。卒中后的神经炎

症主要由小胶质细胞和星形胶质细胞激活介导，受

损脑组织释放损伤相关分子模式（damage-associated 

molecular patterns，DAMPs），如高迁移率族蛋白 B1

（high mobility group box 1，HMGB1）和 热 休 克 蛋 白

（heat shock proteins，HSPs），激活 TLR4/NF-κB 信号

通路，促使小胶质细胞释放TNF-α、IL-1b和IL-6［33］。

这些促炎因子可通过 BBB 进入外周循环，影响 ENS

和 ANS 的功能，进而抑制胃肠蠕动、增加肠道通透

性，并改变肠道免疫微环境［34］。此外，卒中诱导的

HPA 轴激活可促进糖皮质激素分泌，长期高水平糖

皮质激素状态会减弱肠道免疫屏障，加剧胃肠道的

易损性，使肠道易受微生物代谢产物及炎症因子的

攻击［35］。另一方面，神经炎症也可影响交感迷走

轴，进一步加重 GID 的发生。TNF-α 和 IL-6 的持续

释放可促使 SNS 活性增强，释放大量去甲肾上腺素，

导致胃肠道血管收缩、蠕动减弱，并通过 b2- 肾上腺

素受体信号通路影响紧密连接蛋白的功能，削弱肠

道屏障完整性，使肠道通透性增加［36］。与此同时，

IL-1b 和 IL-6 可作用于迷走神经核团（dorsal motor 

nucleus of vagus，DMV），降低 VN 传出信号的强度，
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削弱胃肠蠕动和分泌功能，使胃肠道的应激反应更

加显著［37］。这种 SNS 兴奋与 VN 抑制的协同作用，

不仅影响胃肠动力，还可改变胃肠道的免疫环境，

降低其对外界病原体的抵御能力，使炎症状态持续

加重。除了 ANS 的调节外，卒中后神经炎症还可通

过激活肠道固有免疫系统进一步放大胃肠道的炎

症反应。卒中后，CNS 释放的促炎因子可通过 GBB

作用于肠道固有淋巴组织（gut-associated lymphoid 

tissue，GALT），促进树突状细胞活化，并诱导 Th17

细胞分泌 IL-17，增强肠道促炎信号［38］。CNS 损伤

之后，外周免疫系统会出现适应性改变，如 Treg 细

胞数量减少、M1 型巨噬细胞活化增多，导致抗炎机

制受损，促炎环境占据主导地位［38］。这种免疫失

衡致使肠道屏障更容易受损，并加重了局部炎症反

应，使 GID 的病理过程恶化。卒中后胃肠道的炎症

状态不只是神经炎症的结果，还可以反向影响 CNS，

加重卒中后的神经损伤。这种反向作用的关键机制

之一是肠屏障破坏致使肠源性炎症因子进入全身

循环，激活 CNS 炎症。卒中后，肠道屏障功能受损，

肠道菌群代谢产物可通过 GBB 进入外周血液，激活

Toll 样受体 4（Toll-like receptor 4，TLR4）信号通路，

使单核细胞和巨噬细胞分泌大量 TNF-α 和 IL-1β。

这些炎性介质可通过 BBB 进入 CNS，增强小胶质细

胞活性，使神经炎症反应进一步升级［24］。此外，肠

道炎症可导致 NLRP3 炎性小体活化，促使 IL-1b 和

IL-18 释放，使炎症信号跨屏障扩散，加剧卒中后神

经损伤［39］。因此，卒中后神经炎症不仅直接影响

胃肠功能，还可通过多种机制放大胃肠道炎症反应；

而肠道炎症反过来也可影响 CNS，加重神经损伤。

这种双向交互作用构成了卒中后脑 - 肠轴紊乱的重

要病理基础。

3. 肠道菌群 - 脑轴调控：肠道菌群作为脑 - 肠

轴的关键构成部分，借助调节神经、免疫以及内分

泌信号，于卒中后 GID 的发生与进展进程中发挥着

关键作用。相关研究显示，卒中会致使肠道菌群的

组成以及代谢功能产生改变，这些改变对胃肠道稳

态造成直接影响，还可借助菌群代谢产物以及免疫

介质对 CNS 产生作用，形成卒中 - 菌群失衡 - 神经

炎症 -GID 这样的病理循环［7］。卒中发生后，肠道

菌群的多样性与稳定性遭到破坏，体现为有益菌

数量减少，潜在致病菌出现增殖现象。研究显示，

卒中患者肠道内厚壁菌门 / 拟杆菌门（Firmicutes/
Bacteroidetes，F/B 比值）比例显著升高，双歧杆菌

（Bifidobacterium）、乳 杆 菌（Lactobacillus）的 数 量 有

所减少［6］。菌群平衡的改变还能通过代谢产物

（SCFAs）、神经递质前体（如色氨酸代谢物）及免疫调

节因子影响 CNS 功能［40］。SCFAs 作为肠道菌群代

谢碳水化合物所产生的关键产物，包括乙酸、丙酸、

丁酸等多种成分，在维系肠屏障功能以及免疫稳态

等方面发挥着关键的作用。SCFAs 可借助 G 蛋白偶

联受体（GPR41/GPR43）对 ENS 的兴奋性给予调节，

并且推动调节性 T 细胞的分化进程，减少炎症因子

的释放量，提高肠道的抗炎能力［41］。然而，卒中后

SCFAs 水平下降，使抗炎保护作用减弱，加剧肠道

炎症，并可能通过 GBB 影响 CNS 神经炎症，形成跨

屏障的免疫紊乱［17］。此外，SCFAs 还可通过组蛋白

去乙酰化酶（histone deacetylase，HDACs）抑制调节

小胶质细胞活性，减少神经炎症，这一机制在卒中

后可能因 SCFAs 减少而失效［17］。除了 SCFAs 外，肠

道菌群还通过色氨酸 - 吲哚代谢途径影响 CNS 功

能。色氨酸是 5-HT 合成的前体，而 5-HT 在调节胃

肠蠕动和 CNS 信号传导方面至关重要。卒中后，色

氨酸代谢途径发生改变，吲哚衍生物（如吲哚 -3-

乙酸，IAA）水平降低，而促进神经炎症的犬尿酸

（kynurenic acid，KYNA）及 喹 啉 酸（quinolinic acid，

QUIN）水平升高［27］。KYNA 被认为具有神经保护作

用；而 QUIN 则可过度激活 NMDA 受体，导致兴奋性

神经毒性增加，加剧神经炎症，并可能通过 VN 影响

胃肠功能［42］。因此，卒中后色氨酸代谢失衡可能

是连接菌群紊乱与神经炎症的重要桥梁，这一机制

在 GID 的发展过程中值得进一步研究。此外，特定

肠道菌群的变化可直接影响神经递质水平。卒中

后，产 GABA 和多巴胺的菌群减少，而促炎菌群（如

大肠杆菌属 Escherichia）增多。GABA 是 CNS 的主要

抑制性神经递质，能通过 GABA_A 受体影响 ENS 功

能，调节胃肠道运动和分泌［28］。当 GABA 合成菌减

少时，ENS 的兴奋性受到影响，可能加剧 GID；同时，

多巴胺合成菌（如某些拟杆菌属）减少，使 CNS 的神

经调控功能下降，可能进一步影响 ANS 对胃肠道的

调节能力［27］。菌群的变化会影响肠道功能，还可以

经由 TLR4/NF-κB 信号通路诱导神经炎症，卒中发

生后特定菌群（如变形菌门 Proteobacteria）数量增多，

会产生大量 LPS，这些 LPS 可凭借 GBB 进入循环系

统，引发系统性炎症，同时激活 CNS 的小胶质细胞，

促使 TNF-α、IL-6 和 IL-1b 释放，加重神经炎症［43］。

LPS 作用于 VN，会削弱胆碱能抗炎通路，致使 ANS

的调节能力降低，加剧 GID 的病理进程［44］。卒中后

肠道菌群紊乱，改变了胃肠道的生态稳态，还借助
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SCFAs 代谢、色氨酸 - 吲哚通路、神经递质调节以及

TLR4/NF-κB 炎症信号对 CNS 功能产生影响，加重

神经炎症，让 GID 的病理机制变得更加复杂。这一

系列变化呈现了菌群 - 神经 - 免疫的交互作用，成

为卒中后脑 - 肠轴紊乱的关键病理环节［45］。

4. 卒中后脑 - 肠轴紊乱的双向作用：脑 - 肠轴

的核心特征是 CNS 与胃肠道之间的双向信息交流，

卒中后，这一动态调控系统的稳态被破坏，导致

CNS 损伤与 GID 互相促进，加重病理过程。这一双

向作用主要涉及 CNS 炎症信号向外周传播（“自上

而下”调控失衡）和胃肠道功能障碍反向影响 CNS

（“自下而上”反馈失衡），最终形成卒中 - 神经炎

症 -GID- 菌群失衡［46］。卒中后，CNS 的神经炎症和

ANS调节异常可通过BBB和交感迷走轴影响胃肠功

能。在“自上而下”通路中，卒中诱导的神经炎症

释放大量 TNF-α、IL-1b、IL-6，这些促炎因子可通过

BBB 进入外周循环，直接作用于 ENS 和肠道免疫细

胞，引发肠道炎症和屏障损伤［24］。此外，SNS 兴奋

增强，使去甲肾上腺素释放增加，导致胃肠道供血

不足、蠕动减弱、屏障通透性增加，加重 GID 的发生
［43］。另一方面，GID 可通过 GBB 和菌群代谢产物反

向影响 CNS，构成“自下而上”反馈失衡。在卒中后

GID 的发生过程中，肠道屏障功能下降，使肠道细

菌代谢产物更容易穿透上皮屏障，进入循环后可通

过 TLR4/NF-κB 信号通路激活全身免疫反应，并最

终影响 CNS 中的小胶质细胞活性［24］。此外，卒中后

SCFAs 水平下降，导致其对炎症调节的保护作用减

弱，进一步促进神经炎症的持续发展［29］。与此同时，

色氨酸代谢异常可通过影响 5-HT 和 KYNA/QUIN 平

衡，调控 CNS 神经递质水平，影响卒中后的神经可

塑性和康复进程［35］。这一病理循环并非短时间内

发生的事件，而是一个持续存在的动态过程，有可

能引发卒中后长期出现的消化道症状、认知障碍以

及神经功能恢复欠佳等，研究显示，卒中后 GID 的

严重程度同患者的神经康复进程、认知能力降低以

及抑郁发生率紧密关联，脑 - 肠轴紊乱或许不只是

卒中的并发症，更有可能成为影响长期预后的关键

要素［34］。卒中后脑 - 肠轴的双向作用致使 CNS 炎

症与 GID 相互促进，形成恶性循环，此机制说明卒

中后脑 - 肠轴的调控如要直接改善胃肠功能，还需

要结合神经炎症干预、菌群平衡恢复以及代谢优化

等多层面调节策略，针对这一病理循环的干预也许

会成为改善卒中后预后的关键目标。

四、卒中相关 GID 的干预策略及进展

卒中诱发脑 - 肠轴出现紊乱的情况，其中涉及

ANS 失衡、神经炎症加剧、肠道屏障功能出现障碍

以及菌群失调等问题，这一病理过程呈现出高度的

系统性以及各因素间的相互作用特性，仅仅依靠单

一的治疗方式，很难有效逆转肠道菌群失调及其给

CNS 带来的负面影响。面对这样复杂的病理网络，

多维联合干预策略渐渐成为研究的热门方向。在这

些策略中，神经调控、免疫炎症调节、肠道微生态重

塑以及新型精准药物递送技术相结合，为卒中后肠

道菌群失调的干预指引了新的思路［47-49］。

神经调控疗法在脑 - 肠轴的恢复中起关键作

用，交感 - 副交感神经系统失衡，使胃肠动力降低、

屏障功能受到损害以及局部炎症反应加重，恢复

ANS 的动态平衡可改善 GID，并减轻神经炎症对肠

道的损伤［50］。VN 刺激已被证明能提高胆碱能抗炎

通路的活性，减少促炎细胞因子的释放，同时调控

ENS 对胃肠蠕动和分泌的控制［21］。经皮神经电刺

激（transcutaneous electrical nerve stimulation，TENS）

可借助耳迷走神经或腹部神经节的调节抑制 SNS 过

度激活，提高胃肠道自主调控能力［51］。生物反馈训

练可依靠ANS调节技术提升患者对胃肠功能的自我

调控能力，使其逐渐恢复正常的神经调节模式［52］。

这些神经调控手段可直接改善 GID 症状，还可以在

更深层面影响 CNS 的恢复，让神经 - 胃肠功能的相

互作用趋于稳定状态。

在神经调控的前提下，炎症调节是卒中后脑 -

肠轴干预的关键要点。卒中发生后，CNS 炎症会借

助 BBB 对外周免疫系统产生影响，而肠道免疫应答

出现异常同样会反过来加剧神经炎症，形成炎症级

联反应［53］。针对 CNS- 胃肠轴炎症通路实施精准调

控成为改善 GID 的关键办法。NLRP3 炎性小体抑制

剂（如 MCC950）已被证明可减少 IL-1b 以及 IL-18 的

释放，抑制炎症放大效果，以此降低神经炎症以及

肠道屏障的损伤［54］。LR4/NF-κB 信号通路抑制剂

（如 TAK-242）可凭借减少 LPS 介导的促炎信号，降

低小胶质细胞和肠道免疫细胞的过度激活，缓解炎

症反应［55］。炎症调节的策略不应只局限于抑制促

炎信号，还需要提高内源性抗炎机制，比如胆碱酯

酶抑制剂（加兰他敏）可凭借提高 VN 活性提升胆碱

能抗炎信号，让炎症调节更具长期稳定性［55］。

肠道微生态的干预是优化脑 - 肠轴稳态的关键
方法，卒中之后菌群构成以及代谢产物的改变，会对
胃肠功能产生影响，又可借助代谢通路调控 CNS 的
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神经递质平衡［56］。由此可见，重塑健康的菌群生态
对于卒中后胃肠功能障碍的恢复十分关键。益生菌

（如双歧杆菌、乳酸杆菌）可凭借增加SCFAs的合成来
改善肠道屏障功能，还可以减少神经炎症反应［57］。 
肠道菌群移植（fecal microbiota transplantation，FMT）
作为一种更直接的干预手段，可有效恢复菌群结构，
并且提升肠道微生物的代谢功能［57］。另外膳食干
预（如富含膳食纤维及色氨酸的饮食）可优化菌群代
谢途径，提高 SCFAs 以及 5-HT 的合成水平，在微生
物 - 神经 - 免疫轴层面改善脑 - 肠轴的稳态［27］。

随着精准医学的不断发展，纳米技术于卒中以及
与之相关并发症的治疗领域展现出广阔的应用前景。
纳米材料有高生物相容性、靶向递送以及缓释控制等
特性，可用于卒中后脑-肠轴的精准干预［58-59］。如聚
合物纳米载体可以搭载 NLRP3 抑制剂，达成 CNS 与
胃肠道的双向抗炎调控［60］；金属纳米颗粒（如银纳
米颗粒）可用于调节肠道菌群生态，降低促炎菌的增
殖，提高有益菌的稳态作用［61］；仿生纳米囊泡可依
靠模拟神经递质的信号传递，实现对ANS的精准调
控，优化胃肠功能的神经调节能力［60］。智能响应型
纳米系统可依据炎症环境的变化，动态释放抗炎或
免疫调节药物，让脑 - 肠轴的恢复更为精准可控，这
些新型技术可提升现有药物的治疗效果，还可减少
传统药物系统性作用引发的不良反应，使脑 - 肠轴
调控更具临床转化价值。

综上，考虑脑 - 肠轴紊乱的复杂性，多维干预
策略需要协同运用，以此来优化卒中后 GID 的恢复
情况。神经调控、炎症调节以及菌群重塑可从不同
层面让脑 - 肠轴恢复到稳态，而纳米技术可提供更
为精准的靶向治疗方式，这些方式可以形成协同效
应，如迷走神经刺激与 NLRP3 抑制剂联合在一起可
提高抗炎效果，粪菌移植与纳米递送系统相结合可
提升益生菌的存活率以及定植能力。另外，纳米材
料搭载 SCFAs 前体以及色氨酸代谢调节剂，可优化
CNS 和胃肠道的功能，为脑 - 肠轴的长期稳态给予
支持［62］。多维联合干预关注卒中后GID的症状改善，
还重视脑 - 肠轴的整体稳态调节，借助神经、免疫、
微生态以及精准医学的多层次结合构建全面的卒中
后 GID 管理体系。未来的研究应探索不同治疗策略
的最优组合模式，并且借助临床试验对其有效性和
安全性加以验证，期望实现更精准、高效的卒中后
脑 - 肠轴干预，改善患者的长期预后。

五、总结与展望
卒中后出现的 GID，并非仅仅是胃肠道功能出

现障碍的一种表现，实际上是脑 - 肠轴整体处于稳

态被破坏之后所产生的结果，其涉及 ANS 功能失去

平衡、神经炎症加剧、肠道屏障受到损伤以及菌群

代谢发生紊乱等多个方面。目前研究显示，CNS 与

胃肠道之间存在的双向调控失去平衡，这种失衡加

重了卒中所引发的全身炎症状况，致使胃肠道功能

障碍与神经损伤之间形成了一种持续不断的恶性循

环。传统的对症治疗方式难以从根本上对胃肠道功

能障碍起到改善作用，迫切需要更为精准的全局稳

态调控策略。

多维联合干预策略融合了 ANS 调控、炎症免

疫调节、肠道菌群修复以及新型药物递送等多方面

内容，有希望打破卒中后 GID 的病理循环，如 VNS、

TENS 等 ANS 调控方式，可恢复 SNS 和 PNS 之间的平

衡，提高 ENS 调节能力，改善胃肠动力以及屏障功

能。炎症干预可以精准调控 CNS- 胃肠轴的免疫稳

态，减少促炎信号的不断放大。菌群修复可借助代

谢通路对脑 - 肠轴信号传导产生影响，促进神经递

质达到平衡状态。纳米技术的应用提升了脑 - 肠轴

干预的精准性与可控性，智能纳米载体可实现靶向

抗炎、微生态调节以及神经功能修复，让脑 - 肠轴稳

态调控更具临床转化价值。

多维联合干预于卒中后 GID 管理中虽呈现出较

大潜力，然而却面临着很多挑战：首先，不同患者的

脑 - 肠轴紊乱模式存有个体差异，怎样精准识别病

理亚型并制定个性化干预策略，仍有待深入研究，

其次，诸多新型干预措施如 VNS、FMT、纳米药物递

送等在卒中后 GID 里的临床证据依旧较为有限，需

要更多随机对照试验来验证其安全性与有效性。不

同干预手段之间的协同作用以及最优组合模式尚未

明晰，如何优化干预时机、剂量以及联合方案将是

未来研究的关键方向。随着精准医学持续发展，卒

中后 GID 的管理有望从单一靶点干预朝着全局稳态

调控转变，最终改善患者的长期预后，提升患者生

活质量。
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