老年脑卒中患者营养风险指数对30天非计划再入院的预测价值
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Correlation between nutritional risk index and 30-day unplanned readmission in elderly stroke patients
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨老年营养风险指数(GNRI)与老年脑卒中患者非计划再入院(再入院)的关 系。方法 回顾性分析 2019 年 6 月至 2022 年 5 月江苏省盐城市第三人民医院收治的 307 例老年脑卒 中患者的临床资料。根据所有患者的 GNRI 中位数,将患者分为 GNRI 正常组(GNRI ≥ 92)和低 GNRI 组(GNRI < 92)。使用倾向性评分匹配法(PSM)得到年龄、入院时白蛋白等 13 个变量均衡的两组样本, 采用 Logistic 回归分析 PSM 前后 GNRI 对再入院的影响,采用受试者工作特征(ROC)曲线下面积(AUC) 评价单独及校正其他协变量后 GNRI 对再入院的预测价值。结果 307 例老年脑卒中患者的 GNRI 为 (92.62±25.30),GNRI 正常患者 133 例,占 43.32%。PSM 后,共 126 对匹配成功,两组患者的年龄、体重 指数、合并糖尿病、住院时间、手术治疗比例、白蛋白等临床资料比较,差异无统计学意义(P> 0.05)。 PSM 后,低 GNRI 组的再入院率为 28.57%(36/126)高于 GNRI 正常组的 11.90%(15/126),差异有统计学意 义(χ2 =10.841,P=0.001)。PSM 后的 Logistic 回归分析显示,仅纳入 GNRI 的模型 1 中,低 GNRI 患者的再 入院风险较 GNRI 正常者增加 2.232 倍(OR=3.232,95%CI:1.701~6.138,P=0.001);在校正了年龄、性别 后的模型 2 中,低 GNRI 患者的再入院风险较 GNRI 正常者增加 2.206 倍(OR=3.206,95%CI:1.674~6.138, P=0.001);在校正了年龄、性别等所有变量后的模型 3 中,低 GNRI 患者的再入院风险较 GNRI 正常者分 别增加 2.052 倍(OR=3.052,95%CI:1.469~6.339,P=0.003)。ROC 曲线分析显示,模型 1 预测患者再入 院的AUC为 0.821(95%CI:0.755~0.886),采用模型 2、3 校正协变量后预测再入院的AUC分别为 0.828 (95%CI:0.770~0.886)、0.847(95%CI:0.797~0.898),模型 3 的AUC高于模型 1、2,差异有统计学意义 (Z=3.036、2.457;P=0.002、0.014)。结论 GNRI 可有效预测老年脑卒中患者再入院的发生,具有重要的 预警作用,可能指导医护人员对老年脑卒中患者进行营养管理。

    Abstract:

    Objective To explore the correlation between the geriatric nutritional risk index (GNRI) and unplanned readmission (readmission) in elderly stroke patients. Methods The clinical data of 307 elderly stroke patients admitted to the Yancheng Third People's Hospital, Jiangsu Province from June 2019 to May 2022 were retrospectively analyzed. According to the median GNRI of all patients, they were divided into a normal GNRI group (GNRI≥92) and a low GNRI group (GNRI<92). The propensity score matching (PSM) was used to obtain two sets of samples with 13 variables balanced, such as age and albumin at admission. Logistic regression was used to analyze the impact of GNRI on readmission before and after PSM. The predictive value of GNRI on readmission was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) alone and after adjusting for other covariates. Results Among 307 elderly stroke patients, the GNRI was (92.62±25.30), and 43.32%(133/307)patients had normal GNRI. After PSM, a total of 126 pairs were successfully matched. There was no statistical difference between the two groups in age, body mass index,diabetes, hospital stay, surgical treatment ratio, albumin and other clinical data (P > 0.05). After PSM, the readmission rate of the low GNRI group was 28.57% (36/126), which was higher than the 11.90% (15/126) of the normal GNRI group, and the difference was statistically significant (χ2 =10.841, P=0.001). Logistic regression analysis after PSM showed that in Model 1, which only included GNRI, the readmission risk of patients with low GNRI increased by 2.232 times compared to those with normal GNRI, and the difference was statistically significant [OR=3.232,95%CI(1.701,6.138),P=0.001]. In Model 2, after adjusting for age and gender, the readmission risk of patients with low GNRI increased by 2.206 times compared to those with normal GNRI, and the difference was statistically significant [OR=3.206,95%CI(1.674,6.138),P=0.001]. In Model 3, after adjusting for all variables such as age and gender, the readmission risk of patients with low GNRI increased by 2.052 times compared to those with normal GNRI, with a statistically significant difference [OR=3.052, 95%CI (1.469, 6.339), P=0.003]. ROC curve analysis showed that the predicted AUC for readmission of Model 1 was 0.821 [95%CI (0.755, 0.886)]. After adjusting for covariates using Model 2 and Model 3, the predicted AUC for readmission were 0.828 [95%CI (0.770, 0.886)] and 0.847 [95%CI (0.797, 0.898)], respectively. The AUC of Model 3 was higher than that of Model 1 and Model 2, and the difference was statistically significant (Z=3.036, 2.457; P=0.002, 0.014). Conclusions GNRI can effectively predict the readmission of elderly stroke patients and has an important warning role, which may guide medical and nursing staff in nutritional management of elderly stroke patients.

    参考文献
    相似文献
    引证文献
引用本文

陈志朋,刘雪梅,周晓花,王淑芳.老年脑卒中患者营养风险指数对30天非计划再入院的预测价值[J].神经疾病与精神卫生,2023,23(11):
DOI :10.3969/j. issn.1009-6574.2023.11.004.

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-26