精神分裂症患者代谢综合征风险调查及其预测模型的建立
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

眉山市2024年科技计划项目( 2024KJZD132)


Investigation of the risk of metabolic syndrome in patients with schizophrenia and development ofa prediction model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 调查精神分裂症患者代谢综合征(MS)的发生风险,建立其预测模型并进行验证。 方法 选择2022 年1 月—2024 年4 月眉山市中医医院接诊的362 例精神分裂症患者资料进行回顾性分 析。采用R语言软件中“ caret”包以7∶3比例将患者分为模型组253例,验证组109例,收集可能影响 发生MS的相关因素。模型组患者根据是否合并MS分为MS 组与非MS 组,比较两组患者的一般资料、 疾病及治疗相关指标,以LASSO 回归筛选潜在变量后行多因素Logistic 回归筛选出潜在预测因子,以 此建立多因素Logistic 回归模型,以列线图可视化后进行模型验证。结果 模型组患者中共出现62 例 (24.51%)MS。MS组与非MS组患者年龄、病程、吸烟史、饮酒史、MS 家族史、三因素进食问卷(TFEQ-21)得 分、日均运动时间、药物种类、服药年限比较,差异均有统计学意义(均P < 0.05)。多因素Logistic 回归 分析结果显示,年龄(OR=1.027,95%CI=1.007~1.047)、病程(OR=1.946,95%CI=1.405~2.695)、体重 指数(OR=1.066,95%CI=1.004~1.132)、MS 家族史(OR=2.514,95%CI=1.197~5.281)、TFEQ-21得分(OR=1.218, 95%CI=1.130~1.312)、药物种类(OR=2.802,95%CI=1.126~6.970)为精神分裂症患者发生MS 的独立影 响因素(P< 0.05)。模型组受试者工作特征(ROC)曲线下面积为0.856,95%CI=0.803~0.908,敏感度为 80.6%,特异度为73.3%;验证组ROC 曲线下面积为0.854,95%CI=0.799~0.908,敏感度为77.4%,特异 度为78.5%。模型组与验证组模型曲线与理想模型曲线基本拟合成对角线。临床有效性分析结果显示 当预测概率阈值0.05~0.95 时使用本研究模型预测精神分裂症患者MS 的净获益最高。结论 精神分 裂症患者发生MS 主要受年龄、病程、体重指数等因素的影响,基于上述因素建立的列线图模型可用于 预测精神分裂症患者MS 患病风险。

    Abstract:

    Objective To investigate the risk of metabolic syndrome( MS) in patients with schizophrenia, develop and validate its prediction model. Methods The data of 362 schizophrenia patients in Traditional Chinese Medicine Hospital of Meishan from January 2022 to April 2024 were selected for retrospective analysis. The patients were divided into 253 cases in model group and 109 cases in validation group using the "caret" package in the R language software in a ratio of 7∶3 to collect factors that may affect MS. In model group, patients were divided into MS group and non-MS group according to whether they were combined with MS or not, and the general information, disease and treatment-related indexes of patients in the two groups were compared. LASSO regression was used to screen potential variables and then multifactor Logistic regression was performed to screen potential predictors, which was used to establish the multifactor Logistic regression model. Model validation was performed after visualization in a nomogram. Results There were 62 patients( 24.51%) with MS in model group. The differences in age, duration of disease, history of smoking, history of drinking, family history of MS, 21-item Three-Factor Eating Questionnaire( TFEQ-21)scores, average daily exercise time, type of medication, and years of medication between patients in MS group and non-MS group were statistically significant( all P<0.05). Multifactorial Logistic regression analysis showed that age[ OR=1.027, 95%CI( 1.007,1.047)], duration of disease[ OR=1.946, 95%CI( 1.405,2.695)], body mass index[ OR=1.066, 95%CI( 1.004,1.132)], family history of MS[ OR=2.514, 95%CI( 1.197, 5.281)], TFEQ-21 score[ OR=1.218, 95%CI( 1.130, 1.312)], and type of medication[ OR=2.802, 95%CI( 1.126, 6.970)] were independent predictors of MS in patients with schizophrenia( P<0.05). In model group, the area under the receiver operating characteristic( ROC) curve was 0.856[95%CI( 0.803,0.908)], with a sensitivity of 80.6% and a specificity of 73.3%. In validation group, the area under the ROC curve was 0.854[ 95%CI (0.799,0.908)], with a sensitivity of 77.4% and a specificity of 78.5%. The model curves of model group and validation group were basically fitted diagonally to the ideal model curves. Clinical effectiveness analysis showed the highest net benefit in predicting MS in patients with schizophrenia using the model when the predictive probability threshold was 0.05 to 0.95. Conclusions MS in patients with schizophrenia is mainly influenced by age, disease duration, and body mass index, and a nomogram based on these factors can be used to predict the risk of MS in patients with schizophrenia.

    参考文献
    相似文献
    引证文献
引用本文

代娟,吴建桦,宋烨,周娟.精神分裂症患者代谢综合征风险调查及其预测模型的建立[J].神经疾病与精神卫生,2025,25(9):632-638
DOI :10.3969/j. issn.1009-6574.2025.09.004.

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16