急性脑梗死血管内治疗患者预后不良风险预测模型的构建与验证
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

2020 年度宿州市科技计划项目


Construction and validation of a risk prediction model for poor prognosis in patients with acutecerebral infarction undergoing endovascular therapy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 建立急性脑梗死血管内治疗患者预后不良的风险预测模型并进行验证。方法 选取 2020年1月1日—2022年12月31日在安徽医科大学附属宿州医院神经内科行早期血管内治疗的180 例 急性脑梗死患者为研究对象。通过医院管理信息系统,收集患者的一般资料及治疗过程。采用美国 国立卫生研究院卒中量表(NIHSS)评估患者神经功能缺损程度,采用Alberta 卒中项目早期CT评分 (ASPECTS)评价患者早期缺血性改变造成的脑组织损伤程度,采用改良Rankin 量表(mRS)评价脑卒中 患者神经功能恢复情况。根据患者3 个月时的mRS 评分结果将患者分为预后良好组(mRS 评分≤ 2 分) 及预后不良组(mRS 评分> 2 分)。采用多因素Logistic 回归分析影响患者预后的危险因素,并建立模型, 列线图形式呈现。采用循环1 000 次自抽样的Bootstrap 方法绘制校准曲线评估模型的一致性,并进行 决策曲线分析(DCA)评估其临床适用性。结果 预后良好组患者98 例,预后不良组患者82 例。多因 素Logistic 回归分析显示,发病前mRS 评分[OR(95%CI)=2.383(1.372~4.105)]、ASPECTS[OR(95%CI)= 0.481(0.272~0.874)]、出血转化[OR(95%CI)=16.370(1.941~138.220)]是患者预后的独立影响因素(均 P< 0.05)。预测模型曲线下面积(AUC)为0.88(95%CI=0.82~0.94),敏感度为0.887,特异度为0.792,最 佳截断值为0.482。Hosmer-Lemeshow检验的P值为1.000,模型预测效能良好。结论 以发病前mRS评分、 ASPECTS、出血转化等影响患者治疗预后的危险因素建立的风险评估模型可辅助预测急性脑梗死血管 内治疗患者的预后。

    Abstract:

    Objective To develop and validate a risk prediction model for poor prognosis in patients treated with acute cerebral infarction undergoing endovascular therapy. Methods From January 1, 2020 to December 31, 2022, 180 patients with acute cerebral infarction who underwent early endovascular therapy in the Department of Neurology, Suzhou Hospital of Anhui Medical University were selected for the study. Patient general information and treatment process were collected through the Hospital Management Information System (HMIS). The National Institutes of Health Stroke Scale( NIHSS) was used to assess the degree of neurological deficit, the Alberta Stroke Program Early CT Score( ASPECTS) was used to evaluate the degree of cerebral tissue damage caused by early ischemic changes, and the Modified Rankin Scale( mRS) was used to evaluate the neurological recovery of stroke patients. Patients were categorized into a good prognosis group( mRS score ≤2) and a poor prognosis group( mRS score >2) based on the mRS score at 3 months. Risk factors of prognosis were analyzed using multifactorial Logistic regression, and the model was constructed and presented in the form of a nomogram. Consistency of the model was assessed by plotting the calibration curve using the Bootstrap method with 1 000 self-sampling iterations, and decision curve analysis( DCA) was performed to assess its clinical applicability. Results There were 98 patients in good prognosis group and 82 patients in poor prognosis group. Multifactorial Logistic regression analysis showed that pre-onset mRS score[ OR( 95%CI)=2.383( 1.372,4.105)], ASPECTS[ OR( 95%CI)=0.481(0.272,0.874)], and hemorrhagic transformation[ OR(95%CI)=16.370(1.941, 138.220)] were independent risk factors of patients' prognosis, and the differences were statistically significant (all P< 0.05). The area under the curve( AUC) of the prediction model was 0.88[ 95%CI( 0.82,0.94)]. The sensitivity was 0.887, the specificity was 0.792, and the optimal cutoff value was 0.482. The P-value of the Hosmer-Lemeshow test was 1.000, indicating good predictive performance of the model. Conclusions The risk prediction model based on pre-onset mRS score, ASPECTS score, hemorrhagic transformation, and other risk factors of the prognosis of patients after treatment can assist in predicting the prognosis of patients treated with endovascular therapy for acute cerebral infarction.

    参考文献
    相似文献
    引证文献
引用本文

刘闫,亚·娜仁,陈乐,苏永兴,张雷,马争飞.急性脑梗死血管内治疗患者预后不良风险预测模型的构建与验证[J].神经疾病与精神卫生,2025,25(9):639-644
DOI :10.3969/j. issn.1009-6574.2025.09.005.

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-16