基于影像组学术前无创性预测脑胶质瘤PD -1 基因表达水平
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金(82101993)


Preoperative non-invasive prediction of PD -1 gene expression levels in gliomas based on radiomics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 通过使用术前MRI 提取的影像组学特征建立机器学习模型预测脑胶质瘤患者关键 免疫检查点程序性死亡受体1(PD-1)基因的表达水平。方法 于2024 年1—8 月回顾性收集133 例来自 TCGA 数据库的患者,并使用R 软件中的随机抽样“sample 函数”以2∶1 比例将患者随机分为训练组 (89例)和验证组(44例)。通过LASSO算法进行特征筛选和预测模型的构建。通过受试者工作特征(ROC) 曲线在训练组和验证组中评估预测模型的预测效率。通过决策曲线分析评估预测模型的临床适用性。 结果 基于LASSO 算法筛选出6 个影像组学特征,并构建了预测模型。在训练组和验证组中进行ROC 曲线分析,一致性指数(C-index)分别为0.815 和0.728,预测准确度分别为80.9% 和72.7%。结论 脑胶 质瘤患者关键免疫检查点PD-1的表达水平可以通过术前MRI 数据和影像组学技术进行预测。

    Abstract:

    Objective To establish a machine learning model using radiomics features extracted from preoperative MRI to predict the expression levels of the key immune checkpoint, programmed death receptor-1 (PD-1) gene, in patients with glioma. Methods From January to August 2024, 133 patients were retrospectively collected from The Cancer Genome Atlas( TCGA) database. Using the random sampling "sample function" in R software, patients were randomly assigned in a 2∶1 ratio to training group( 89 cases) and validation group( 44 cases). Feature selection and predictive model construction were performed using the LASSO algorithm. The predictive performance of the model was evaluated on the training and validation sets using the receiver operating characteristic( ROC) curve. The clinical practicality of the model was assessed through decision curve analysis. Results Six radiomics features were selected using the LASSO algorithm, and a predictive model was constructed. Six radiomics features were selected using the LASSO algorithm, and a predictive model was constructed. ROC curve analysis on the training and validation sets yielded C-index values of 0.815 and 0.728, respectively, with accuracy rates of 80.9% and 72.7%. Conclusions The expression level of PD-1, a key immune checkpoint in glioma patients, can be predicted using preoperative MRI data and radiomics technology.

    参考文献
    相似文献
    引证文献
引用本文

李一鸣,李冠璋,张伟,钱增辉.基于影像组学术前无创性预测脑胶质瘤PD -1 基因表达水平[J].神经疾病与精神卫生,2025,25(11):791-
DOI :10.3969/j. issn.1009-6574.2025.11.005.

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-21