精神分裂症谱系障碍患者暴力攻击行为风险预测模型的范围综述
作者:
作者单位:

作者简介:

通讯作者:

基金项目:


Risk prediction models for violent aggressive behavior in patients with schizophrenia spectrum disorders:a scoping review
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 对精神分裂症谱系障碍患者暴力攻击行为风险预测模型的研究进行范围综 述,以为未来研究和临床决策提供依据。方法 聚焦精神分裂症谱系障碍患者暴力攻击行为风险 预测模型,系统检索中国生物医学文献数据、中国知网、维普网、万方数据库、PubMed、Cochrane Library、CINAHL、Embase 和Web of Science 9 个中、英文数据库,检索时限为2014 年1 月1 日— 2024 年 7 月6 日,提取模型建模方法、验证及呈现形式、预测因子和预测效能等信息,并进行规范化报告。 结果 共纳入18 篇文献,模型构建人数为57~1 426 例,精神分裂症谱系障碍患者暴力攻击行为发生率 为24%~79.70%,涉及Logistic 回归和多种机器学习算法模型,其中监督机器学习法在预测此类行为方 面表现最佳,暴力攻击行为史、阴性症状、抗精神病用药史、年龄、住院时间、教育水平与依从性是常见 预测因子。结论 现有预测模型在预测精神分裂症谱系障碍患者暴力攻击行为方面具有一定效果,未 来应在人工智能背景下利用多模态临床预测模型对此类行为进行更准确的风险评估,优化其发生的关 键影响因素,从而为临床尽早实施干预决策提供依据。

    Abstract:

    Objective To conduct a scoping review on risk prediction models for violent aggression behavior in patients with schizophrenia spectrum disorders, so as to inform future research and clinical decisionmaking. Methods Risk prediction models for violent aggression behavior in patients with schizophrenia spectrum disorders were systematically searched in 9 Chinese and English databases, including Chinese Biomedical Literature Data, China National Knowledge Infrastructure, VIP, WanFang Data, PubMed, Cochrane Library, CINAHL, Embase, and Web of Science. The search period was from January 1, 2014 to July 6, 2024. Data on modeling methods, validation and presentation formats, predictors, and predictive performance were extracted, and standardized reporting was conducted. Results A total of 18 articles were included, and the sample size of model construction ranged from 57 to 1 426. The incidence of violent aggression behavior in patients with schizophrenia spectrum disorders was from 24% to 79.70%. Logistic regression and various machine learning algorithm models were employed, with supervised machine learning method demonstrating the best performance in predicting such behavior. Common predictors included history of violent aggression behavior, negative symptoms, history of antipsychotic medication use, age, hospital stay, educational level and adherence. Conclusions Existing predictive models demonstrate some effectiveness in forecasting violent aggression behavior among individuals with schizophrenia spectrum disorders. In the context of artificial intelligence, multimodal clinical prediction models should be utilized to conduct accurate risk assessments of such behaviors and optimize the key influencing factors contributing to their occurrence, and thereby providing a basis for early clinical intervention decisions.

    参考文献
    相似文献
    引证文献
引用本文

田华雨,谷晓玲,贾景涵,张欣蕊,苏晓萍,董蓉娜.精神分裂症谱系障碍患者暴力攻击行为风险预测模型的范围综述[J].神经疾病与精神卫生,2026,26(2):107-
DOI :10.3969/j. issn.1009-6574.2026.02.005.

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-02-09